Optimizing chemical reaction conditions using deep learning: a case study for the Suzuki–Miyaura cross-coupling reaction

Organic Chemistry Frontiers(2020)

引用 25|浏览36
暂无评分
摘要
Here we report a feasibility study of a deep learning model for exploring the optimal reaction conditions for given chemical reactions. The model was trained to learn the relationships between the chemical contexts, reaction conditions and product yields based on high-quality existing experimental data, and then extrapolate reasonably to unseen reactions byin silicoexploration of accessible reaction space. This strategy was applied to the Suzuki-Miyaura cross-coupling reaction to find the best catalysts for given reactants and at the same time to discover the optimum combination of the reaction conditions. We demonstrated that the trained model was able to determine the productive catalysts as well as the most favorable catalyst loading and reaction temperature for both modeled reactions and external unseen reactions. This work aims to provide an insight into the feasibility of introducing a deep learning method in the optimization of chemical reaction conditions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要