A Novel Magnetic Material By Design: Observation Of Yb3+ With Spin-1/2 In Ybxpt5p

ACS CENTRAL SCIENCE(2020)

引用 7|浏览30
暂无评分
摘要
The localized f-electrons enrich the magnetic properties in rare-earth-based intermetallics. Among those, compounds with heavier 4d and 5d transition metals are even more fascinating because anomalous electronic properties may be induced by the hybridization of 4f and itinerant conduction electrons primarily from the d orbitals. Here, we describe the observation of trivalent Yb3+ with S = 1/2 at low temperatures in YbxPt5P, the first of a new family of materials. YbxPt5P (0.23 <= x <= 0.96) phases were synthesized and structurally characterized. They exhibit a large homogeneity width with the Yb ratio exclusively occupying the la site in the anti-CeCoIn5 structure. Moreover, a sudden resistivity drop could be found in YbxPt5P below similar to 0.6 K, which requires further investigation. First-principles electronic structure calculations substantiate the antiferromagnetic ground state and indicate that two-dimensional nesting around the Fermi level may give rise to exotic physical properties, such as superconductivity. YbxPt5P appears to be a unique case among materials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要