Direct Airway Instillation Of Neutrophils Overcomes Chemotactic Deficits Induced By Injury

SHOCK(2021)

引用 5|浏览1
暂无评分
摘要
Background: Trauma induces neutrophil migration toward injury sites, both initiating wound healing and protecting against local bacterial infection. We have previously shown that mitochondrial formyl peptides (mtFPs) released by injured tissues act as chemoattractants by ligating neutrophil (PMN) formyl peptide receptor 1 (FPR1). But this process can also internalize multiple neutrophil chemoattractant receptors and thus might limit neutrophil migration to the lung in response to bacteria. Our objective was to better understand susceptibility to pneumonia after injury and thus find ways to reverse it. Methods and Results: We modeled the alveolar chemotactic environment in pulmonary infections by incubating Staphylococcus aureus or Escherichia coli with peripheral blood mononuclear cells. Survey of the chemotactic mediators in the resultant conditioned media (CM) showed multiple potent chemoattractants. Pretreating PMN with mtFPs to mimic injury potently reduced net migration toward CM and this net effect was mostly reversed by an FPR1 antagonist. Using an established mouse model of injury-dependent lung infection, we then showed simple instillation of exogenous unstimulated human neutrophils into the airway resulted in bacterial clearance from the lung. Conclusion: Injury-derived mtFPs suppress global PMN localization into complex chemotactic environments like infected alveoli. Transplantation of naive exogenous human neutrophils into the airway circumvents that pathologic process and prevents development of post-traumatic pneumonia without injury noted to the recipients.
更多
查看译文
关键词
Chemoattractants, innate immunity, neutrophil transplantation, nosocomial pneumonia, trauma
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要