Twining Plant Inspired Pneumatic Soft Robotic Spiral Gripper With A Fiber Optic Twisting Sensor

OPTICS EXPRESS(2020)

引用 17|浏览2
暂无评分
摘要
The field of soft robotics has been significantly advanced with the recent developments of pneumatic techniques, soft materials, and high-precision motion control. While comprehensive motions can be achieved by sophisticated soft robots, multiple coordinated pneumatic controls are usually required to achieve even the simplest motions. Furthermore, most soft robotics are lacking the ability to sense the environment and provide feedback to the pneumatic control system. In this work, we design a twining plant inspired soft-robotic spiral gripper that requires only one single pneumatic control to perform the twining motion and to firmly hold onto a target object. The soft-robotic spiral gripper has an embedded high-birefringence fiber optic twisting sensor to provide critical information, including twining angle, presence of external perturbation, and physical parameter of the target object. Furthermore, finite element analyses (FEA) in parametric studies of the spiral gripper are performed for module design optimization. The unique single pneumatic channel design enables easy manipulation of the soft spiral gripper with a maximum of 540 degrees twining angle and allows a firm grip of a target object as small as 1-mm in diameter. The embedded fiber optic sensor provides useful information of the target object as well as the twining angle of the soft robotic spiral gripper with high twining angle sensitivity of 0.03nm. The unique fiber-optic sensor embedded single-channel pneumatic spiral gripper that is made from non-toxic silicone rubber allows parallel and soft gripping of elongated objects located in a confined area, which is an essential building block for twining and twisting motions in soft robot. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要