Chrome Extension
WeChat Mini Program
Use on ChatGLM

Investigation of Immobilization Effects on Ni(P2N2)2 Electrocatalysts

INORGANIC CHEMISTRY(2020)

Cited 8|Views4
No score
Abstract
A new synthetic route to complexes of the type Ni(P2N2)(2)(2+) with highly functionalized phosphine substituents and the investigation of immobilization effects on these catalysts is reported. Ni(P2N2)(2)(2+ )complexes have been extensively studied as homogeneous and surface-attached molecular electrocatalysts for the hydrogen evolution reaction (HER). A synthesis based on postsynthetic modification of (P2N2PH)-N-ArBr was developed and is described here. Phosphonate-modified ligands and their corresponding nickel complexes were isolated and characterized. Subsequent deprotection of the phosphonic ester derivatives provided the first Ni(P2N2)(2)2+ catalyst that can be covalently attached via pendent phosphonate groups to an electrode without involvement of the important pendent amine groups. Mesoporous TiO2 electrodes were surface modified by attachment of the new phosphonate functionalized Ni(P2N2)(2)2+ complexes, and these provided electrocatalytic materials that proved to be competent and stable for sustained HER in aqueous solution at mild pH and low overpotential. We directly compared the new ligand to a previously reported complex that utilized the amine moiety for surface attachment. Using HER as the benchmark reaction, the P-attached catalyst showed a marginally (9-14%) higher turnover number than its N-attached counterpart.
More
Translated text
Key words
electrocatalysts,immobilization effects,nip<sub>2</sub>n<sub>2</sub><sub>2</sub>
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined