Black holes in 4D Einstein–Maxwell–Gauss–Bonnet gravity coupled with scalar fields

The European Physical Journal C(2021)

引用 5|浏览5
暂无评分
摘要
Einstein–Maxwell–Gauss–Bonnet-axion theory in 4-dimensional spacetime is investigated in this paper through a “Kaluza–Klein-like” process. Dual to systems at finite temperature with background magnetic field on three dimensions, the four-dimensional dyonic black hole solution coupled with higher derivative terms is obtained. After the tensor-type perturbation is added, the shear viscosity to entropy density ratio is calculated at high temperature and low temperature separately. The behaviour of shear viscosity to entropy density ratio of uncharged black holes is found to be similar with that in 5-dimensional spacetime, violating the Kovtun–Starinets–Son bound as well when temperature becomes lower. In addition, the main feature of this ratio remains almost unchanged in 4 dimensions, which is characterised by (T/ )^2 at low temperature T , with proportional to the coefficient β from scalar fields. The difficulty in causal analysis is also discussed, which is mainly caused by the vanishing momentum term in equations of motion.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要