Universality of noise-induced resilience restoration in spatially-extended ecological systems

COMMUNICATIONS PHYSICS(2021)

引用 4|浏览33
暂无评分
摘要
Many systems may switch to an undesired state due to internal failures or external perturbations, of which critical transitions toward degraded ecosystem states are prominent examples. Resilience restoration focuses on the ability of spatially-extended systems and the required time to recover to their desired states under stochastic environmental conditions. The difficulty is rooted in the lack of mathematical tools to analyze systems with high dimensionality, nonlinearity, and stochastic effects. Here we show that nucleation theory can be employed to advance resilience restoration in spatially-embedded ecological systems. We find that systems may exhibit single-cluster or multi-cluster phases depending on their sizes and noise strengths. We also discover a scaling law governing the restoration time for arbitrary system sizes and noise strengths in two-dimensional systems. This approach is not limited to ecosystems and has applications in various dynamical systems, from biology to infrastructural systems.
更多
查看译文
关键词
Complex networks,Nonlinear phenomena,Phase transitions and critical phenomena,Physics,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要