Nitrogen Doped Silicon-Carbon Multilayer Protective Coatings on Carbon Obtained By Thermionic Vacuum Arc (TVA) Method

AIP Conference Proceedings(2018)

引用 1|浏览13
暂无评分
摘要
To obtain protective nitrogen doped Si-C multilayer coatings on carbon, used to improve the oxidation resistance of carbon, was used TVA method. The initial carbon layer has been deposed on a silicon substrate in the absence of nitrogen, and then a 3nm Si thin film to cover carbon layer was deposed. Further, seven Si and C layers were alternatively deposed in the presence of nitrogen ions. In order to form silicon carbide at the interface between silicon and carbon layers, all carbon, silicon and nitrogen ions energy has increased up to 150eV. The characterization of microstructure and electrical properties of as-prepared N-Si-C multilayer structures were done using Transmission Electron Microscopy (TEM, STEM) techniques, Thermal Desorption Spectroscopy (TDS) and electrical measurements. The retention of oxygen in the protective layer of N-Si-C is due to the following phenomena: (a) The reaction between oxygen and silicon carbide resulting in silicon oxide and carbon dioxide; (b) The reaction involving oxygen, nitrogen and silicon resulting silicon oxinitride with a variable composition; (c) Nitrogen acts as a trapping barrier for oxygen. To perform electrical measurements, ohmic contacts were attached on the N-Si-C samples. Electrical conductivity was measured in constant current mode. To explain the temperature behavior of electrical conductivity we assumed a thermally activated electric transport mechanism.
更多
查看译文
关键词
Atomic Layer Deposition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要