Deciphering lifelong thermal niche using otolith delta O-18 thermometry within supplemented lake trout (Salvelinus namaycush) populations

FRESHWATER BIOLOGY(2020)

引用 4|浏览19
暂无评分
摘要
The selection of thermal habitat by fish is strongly regulated by physiology and behaviour. However, delineation of a species lifelong thermal niche remains technically challenging. Lake trout (Salvelinus namaycush) survival and productivity are recognised as being tightly linked to a somewhat restricted thermal habitat. The factors guiding temperature selection during each life stage remain poorly understood. In this study, we tested the significant factors controlling the realised thermal niche of lake trout from two southern Quebec small boreal lakes that experienced supplementation stocking during the last 20 years. We used oxygen stable isotope (delta O-18) thermometry of otolith calcium carbonates (aragonite) using secondary-ion mass spectrometry to estimate experienced lifelong temperatures. We investigated the thermal habitat of lake trout with known genotypes (local, hybrid, and stocked). Ontogeny and genetic origin influenced temperature selection in both studied lake trout populations. Young-of-the-year consistently used warmer, shallower habitats (10.7 +/- 2.6 degrees C, 7.5 m depth) prior to a juvenile transition to colder and deeper waters (8.5 +/- 3.3 degrees C, 10 m depth). Stocked lake trout, originating from a genetically distinct ecotype, exhibited a more variable thermal niche, with some individuals consistently using warmer habitat (10.4 +/- 1 degrees C) than local fish. Their hybrid progeny also occupied a warmer thermal niche, intermediate to the parental strains. We propose that increased fat content and genetic origin are potential explanatory factors for warmer temperature use. This study reiterates that high-resolution otolith delta O-18 thermometry is a uniquely well-suited approach for unravelling the multiple factors that influence lifelong temperature selection in fish. Our results illustrate that the realised thermal niche is influenced by a genetic-environment interaction.
更多
查看译文
关键词
early life,ontogeny,oxygen stable isotopes,secondary-ion mass spectrometry,thermal boundaries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要