Relevance and Effectiveness of Molecular Tumor Board Recommendations for Patients With Non-Small-Cell Lung Cancer With Rare or Complex Mutational Profiles

JCO PRECISION ONCOLOGY(2020)

引用 26|浏览37
暂无评分
摘要
PURPOSEMolecular tumor boards (MTBs) provide physicians with a treatment recommendation for complex tumor-specific genomic alterations. National and international consensus to reach a recommendation is lacking. In this article, we analyze the effectiveness of an MTB decision-making methodology for patients with non-small-cell lung cancer (NSCLC) with rare or complex mutational profiles as implemented in the University Medical Center Groningen (UMCG).METHODSThe UMCG-MTB comprises (pulmonary) oncologists, pathologists, clinical scientists in molecular pathology, and structural biologists. Recommendations are based on reported actionability of variants and molecular interpretation of pathways affected by the variant and supported by molecular modeling. A retrospective analysis of 110 NSCLC cases (representing 106 patients) with suggested treatment of complex genomic alterations and corresponding treatment outcomes for targeted therapy was performed.RESULTSThe MTB recommended targeted therapy for 59 of 110 NSCLC cases with complex molecular profiles: 24 within a clinical trial, 15 in accordance with guidelines (on label) and 20 off label. All but 16 recommendations involved patients with an EGFR or ALK mutation. Treatment outcome was analyzed for patients with available follow-up (10 on label and 16 off label). Adherence to the MTB recommendation (21 of 26; 81%) resulted in an objective response rate of 67% (14 of 21), with a median progression-free survival of 6.3 months (interquartile range, 3.2-10.6 months) and an overall survival of 10.4 months (interquartile range, 6.3-14.6 months).CONCLUSIONTargeted therapy recommendations resulting from the UMCG-MTB workflow for complex molecular profiles were highly adhered to and resulted in a positive clinical response in the majority of patients with metastatic NSCLC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要