谷歌浏览器插件
订阅小程序
在清言上使用

Formation Of A Calcium Phosphate Layer With Immobilized Cobalt Chromite Nanoparticles On Cobalt-Chromium Alloy By A Laser-Assisted Biomimetic Process

APPLIED SCIENCES-BASEL(2020)

引用 1|浏览15
暂无评分
摘要
The biocompatibility and osteoconductivity of metallic biomaterials can be achieved by calcium phosphate (CaP) coating. We recently developed a laser-assisted biomimetic (LAB) process for rapid and area-specific CaP coating on several materials. In the present study, the LAB process was applied to cobalt-chromium (Co-Cr) alloy, a metallic biomaterial widely used in orthopedic and dental applications. The LAB process was conducted by irradiation of unfocused pulsed laser light onto the substrate immersed in supersaturated CaP solution. The LAB-processed substrate formed CaP on the irradiated surface within only 5 min and was coated with a micron-thick CaP layer within 30 min by the effects of laser-induced surface modification and heating. Ultrastructural analysis with transmission electron microscopy revealed that the resultant CaP layer was integrated with the underlying substrate through two intermediate layers, an upper chromium oxide layer and a lower Co-rich (Cr-deficient) alloy layer. The CaP layer was loaded with a large number of cobalt chromite (CoCr2O4) nanoparticles. The results obtained offer new insights into the mechanism of CaP coating in the LAB process and future applications of LAB-processed Co-Cr alloys.
更多
查看译文
关键词
cobalt-chromium alloy,calcium phosphate,biomimetic process,laser,supersaturated solution,coating,nanocomposite
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要