谷歌浏览器插件
订阅小程序
在清言上使用

Optimization of Nitrate and Selenate Reduction in an Ethanol-Fed Fluidized Bed Reactor Via Redox Potential Feedback Control.

Journal of hazardous materials(2021)

引用 10|浏览11
暂无评分
摘要
Electron donors are a major cost-factor in biological removal of oxyanions, such as nitrate and selenate from wastewater. In this study, an online ethanol dosing strategy based on feedback control of oxidation-reduction potential (ORP) was designed to optimize the performance of a lab-scale fluidized bed reactor (FBR) in treating selenate and nitrate (5 mM each) containing wastewater. The FBR performance was evaluated at various ORP setpoints ranging between -520 mV and -240 mV (vs. Ag/AgCl). Results suggested that both nitrate and selenate were completely removed at ORPs between -520 mV and -360 mV, with methylseleninic acid, selenocyanate, selenosulfate and ammonia being produced at low ORPs between -520 mV and -480 mV, likely due to overdosing of ethanol. At ORPs between -300 mV and -240 mV, limited ethanol dosing resulted in an apparent decline in selenate removal whereas nitrate removal remained stable. Resuming the ORP to -520 mV successfully restored complete selenate reduction. An optimal ORP of -400 mV was identified for the FBR, whereby selenate and nitrate were nearly completely removed with a minimal ethanol consumption. Overall, controlling ORP via feedback-dosing of the electron donor was an effective strategy to optimize FBR performance for reducing selenate and nitrate in wastewater.
更多
查看译文
关键词
Bioreactor,Electron donor,Oxidation-reduction potential,Oxyanion,Wastewater treatment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要