Disentangling the role of bond lengths and orbital symmetries in controlling Tc of optimally doped YBa2Cu3O7

PHYSICAL REVIEW RESEARCH(2022)

引用 0|浏览20
暂无评分
摘要
Optimally doped YBa2Cu3O7 (YBCO) has a high critical temperature, at 92 K. It is largely believed that Cooper pairs form in YBCO and other cuprates because of spin fluctuations, but the issue and the detailed mechanism are far from settled. In the present work, we employ a state-of-the-art first-principles ability to compute both the low- and high-energy spin fluctuations in optimally doped YBCO. We benchmark our results against recent inelastic neutron scattering and resonant inelastic x-ray scattering measurements. Further, we use strain as an external parameter to modulate the spin fluctuations and superconductivity. We disentangle the roles of barium-apical oxygen hybridization, interlayer coupling, and orbital symmetries by applying an idealized strain, and also a strain with a fully relaxed structure. We show that shortening the distance between Cu layers is conducive to enhanced Fermi surface nesting, which increases spin fluctuations and drives up Tc. However, when the structure is fully relaxed, electrons flow to the dz2 orbital as a consequence of a shortened Ba-O bond, which is detrimental for superconductivity.
更多
查看译文
关键词
bond lengths,orbital symmetries,<mmlmath xmlnsmml=http//wwww3org/1998/math/mathml><mmlmsub><mmlmi>t</mmlmi><mmlmi>c</mmlmi></mmlmsub></mmlmath>
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要