Understanding zeolite deactivation by sulfur poisoning during direct olefin upgrading

COMMUNICATIONS CHEMISTRY(2019)

引用 13|浏览1
暂无评分
摘要
The presence of sulfur contaminants in bitumen derived crude oils can lead to rapid catalyst deactivation and is a major problem faced by downstream refiners. Whilst expensive hydrotreating steps may remove much of the sulfur content, it is important to understand how catalyst deactivation by sulfur poisoning occurs and how it may be mitigated. Here we report a mechanistic study of sulfur poisoning over a zeolite catalyst promoted with silver and gallium Lewis acids. Olefin upgrading, an essential process in the refinement of heavy oils, is used as a model reaction. Access to the zeolite inner pores is blocked by bulky, weakly adsorbed sulfur species. Pore access and thus catalyst activity is restored by increasing the reaction temperature. We also show that a simple alkaline treatment greatly improves both the sulfur tolerance and performance of the catalyst. These findings may enhance the rational design of heterogenous catalysts for olefin upgrading.
更多
查看译文
关键词
Catalytic mechanisms,Heterogeneous catalysis,Petrol,Chemistry/Food Science,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要