谷歌浏览器插件
订阅小程序
在清言上使用

Extending the limits of Pt/C catalysts with passivation-gas-incorporated atomic layer deposition

NATURE CATALYSIS(2018)

引用 61|浏览8
暂无评分
摘要
Controlling the morphology of noble metal nanoparticles during surface depositions is strongly influenced by precursor–substrate and precursor–deposit interactions. Depositions can be improved through a variety of means, including tailoring the surface energy of a substrate to improve precursor wettability, or by modifying the surface energy of the deposits themselves. Here, we show that carbon monoxide can be used as a passivation gas during atomic layer deposition to modify the surface energy of already deposited Pt nanoparticles to assist direct deposition onto a carbon catalyst support. The passivation process promotes two-dimensional growth leading to Pt nanoparticles with suppressed thicknesses and a more than 40% improvement in Pt surface-to-volume ratio. This approach to synthesizing nanoparticulate Pt/C catalysts achieved high Pt mass activities for the oxygen reduction reaction, along with excellent stability likely facilitated by strong catalyst–support interactions afforded by this synthetic technique.
更多
查看译文
关键词
Electrocatalysis,Fuel cells,Heterogeneous catalysis,Nanoparticle synthesis,Catalysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要