Low-Scaling Gw With Benchmark Accuracy And Application To Phosphorene Nanosheets

JOURNAL OF CHEMICAL THEORY AND COMPUTATION(2021)

引用 30|浏览12
暂无评分
摘要
GW is an accurate method for computing electron addition and removal energies of molecules and solids. In a conventional GW implementation, however, its computational cost is O(N-4) in the system size N, which prohibits its application to many systems of interest. We present a low-scaling GW algorithm with notably improved accuracy compared to our previous algorithm [J. Phys. Chem. Lett. 2018, 9, 306-312]. This is demonstrated for frontier orbitals using the GW100 benchmark set, for which our algorithm yields a mean absolute deviation of only 6 meV with respect to canonical implementations. We show that also excitations of deep valence, semicore, and unbound states match conventional schemes within 0.1 eV. The high accuracy is achieved by using minimax grids with 30 grid points and the resolution of the identity with the truncated Coulomb metric. We apply the low-scaling GW algorithm with improved accuracy to phosphorene nanosheets of increasing size. We find that their fundamental gap is strongly size-dependent varying from 4.0 eV (1.8 nm x 1.3 nm, 88 atoms) to 2.4 eV (6.9 nm x 4.8 nm, 990 atoms) at the evGW(0)@PBE level.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要