Reconstitution of the oocyte transcriptional network with transcription factors

NATURE(2020)

引用 97|浏览112
暂无评分
摘要
During female germline development, oocytes become a highly specialized cell type and form a maternal cytoplasmic store of crucial factors. Oocyte growth is triggered at the transition from primordial to primary follicle and is accompanied by dynamic changes in gene expression 1 , but the gene regulatory network that controls oocyte growth remains unknown. Here we identify a set of transcription factors that are sufficient to trigger oocyte growth. By investigation of the changes in gene expression and functional screening using an in vitro mouse oocyte development system, we identified eight transcription factors, each of which was essential for the transition from primordial to primary follicle. Notably, enforced expression of these transcription factors swiftly converted pluripotent stem cells into oocyte-like cells that were competent for fertilization and subsequent cleavage. These transcription-factor-induced oocyte-like cells were formed without specification of primordial germ cells, epigenetic reprogramming or meiosis, and demonstrate that oocyte growth and lineage-specific de novo DNA methylation are separable from the preceding epigenetic reprogramming in primordial germ cells. This study identifies a core set of transcription factors for orchestrating oocyte growth, and provides an alternative source of ooplasm, which is a unique material for reproductive biology and medicine.
更多
查看译文
关键词
Oogenesis,Pluripotent stem cells,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要