谷歌浏览器插件
订阅小程序
在清言上使用

Modeling Oil-Water Separation with Controlled Wetting Properties

Journal of chemical physics online/˜The œJournal of chemical physics/Journal of chemical physics(2021)

引用 4|浏览13
暂无评分
摘要
Several oil-water separation techniques have been proposed to improve the capacity of cleaning water. With the technological possibility of producing materials with antagonist wetting behavior, for example, a substrate that repels water and absorbs oil, the understanding of the properties that control this selective capacity has increased with the goal of being used as the mechanism to separate mixed liquids. Besides the experimental advance in this field, less is known from the theoretical side. In this work, we propose a theoretical model to predict the wetting properties of a given substrate and introduce simulations with a four-spin cellular Potts model to study its efficiency in separating water from oil. Our results show that the efficiency of the substrates depends both on the interaction between the liquids and on the wetting behavior of the substrates itself. The water behavior of the droplet composed of both liquids is roughly controlled by the hydrophobicity of the substrate. Predicting the oil behavior, however, is more complex because the substrate being oleophilic does not guarantee that the total amount of oil present on the droplet will be absorbed by the substrate. For both types of substrates considered in this work, pillared and porous with a reservoir, there is always an amount of reminiscent oil on the droplet, which is not absorbed by the substrate due to the interaction with the water and the gas. Both theoretical and numerical models can be easily modified to analyze other types of substrates and liquids.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要