Loss Of Endocytosis-Associated Rabgef1 Causes Aberrant Morphogenesis And Altered Autophagy In Photoreceptors Leading To Retinal Degeneration

PLOS GENETICS(2020)

引用 9|浏览40
暂无评分
摘要
Rab-GTPases and associated effectors mediate cargo transport through the endomembrane system of eukaryotic cells, regulating key processes such as membrane turnover, signal transduction, protein recycling and degradation. Using developmental transcriptome data, we identified Rabgef1 (encoding the protein RabGEF1 or Rabex-5) as the only gene associated with Rab GTPases that exhibited strong concordance with retinal photoreceptor differentiation. Loss of Rabgef1 in mice (Rabgef1(-/-)) resulted in defects specifically of photoreceptor morphology and almost complete loss of both rod and cone function as early as eye opening; however, aberrant outer segment formation could only partly account for visual function deficits. RabGEF1 protein in retinal photoreceptors interacts with Rabaptin-5, and RabGEF1 absence leads to reduction of early endosomes consistent with studies in other mammalian cells and tissues. Electron microscopy analyses reveal abnormal accumulation of macromolecular aggregates in autophagosome-like vacuoles and enhanced immunostaining for LC3A/B and p62 in Rabgef1(-/-) photoreceptors, consistent with compromised autophagy. Transcriptome analysis of the developing Rabgef1(-/-) retina revealed altered expression of 2469 genes related to multiple pathways including phototransduction, mitochondria, oxidative stress and endocytosis, suggesting an early trajectory of photoreceptor cell death. Our results implicate an essential role of the RabGEF1-modulated endocytic and autophagic pathways in photoreceptor differentiation and homeostasis. We propose that RabGEF1 and associated components are potential candidates for syndromic traits that include a retinopathy phenotype.Author summaryEndocytosis and autophagy are evolutionarily conserved processes that are essential for maintenance of cellular homeostasis. RabGEF1 is a major regulator of the Rab5-GTPase, which participates in key steps during endocytosis and autophagy. We demonstrate that loss of RabGEF1 in mice causes specific developmental defects during photoreceptor outer segment formation, leading to visual dysfunction as early as eye opening followed by retinal degeneration. Rabgef1(-/-) retina shows a clear reduction in early endosomes as well as accumulation of autophagic vacuoles in developing photoreceptors. Together with transcriptome analysis, our studies suggest a trajectory of cellular events including altered autophagy that precede photoreceptor cell death in the absence of RabGEF1 and establish a critical role of endocytosis and autophagy in retinal development and proteostasis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要