Motor Cortical Activity During Observing A Video Of Real Hand Movements Versus Computer Graphic Hand Movements: An Meg Study

BRAIN SCIENCES(2021)

引用 6|浏览6
暂无评分
摘要
Both action observation (AO) and virtual reality (VR) provide visual stimuli to trigger brain activations during the observation of actions. However, the mechanism of observing video movements performed by a person's real hand versus that performed by a computer graphic hand remains uncertain. We aimed to investigate the differences in observing the video of real versus computer graphic hand movements on primary motor cortex (M1) activation by magnetoencephalography. Twenty healthy adults completed 3 experimental conditions: the resting state, the video of real hand movements (VRH), and the video of computer graphic hand movements (CGH) conditions with the intermittent electrical stimuli simultaneously applied to the median nerve by an electrical stimulator. The beta oscillatory activity (similar to 20 Hz) in the M1 was collected, lower values indicating greater activations. To compare the beta oscillatory activities among the 3 conditions, the Friedman test with Bonferroni correction (p-value < 0.017 indicating statistical significance) were used. The beta oscillatory activities of the VRH and CGH conditions were significantly lower than that of the resting state condition. No significant difference in the beta oscillatory activity was found between the VRH and CGH conditions. Observing hand movements in a video performed by a real hand and those by a computer graphic hand evoked comparable M1 activations in healthy adults. This study provides some neuroimaging support for the use of AO and VR in rehabilitation, but no differential activations were found.
更多
查看译文
关键词
action observation, virtual reality, magnetoencephalography, primary motor cortex
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要