Conformational Plasticity And Dna-Binding Specificity Of The Eukaryotic Transcription Factor Pax5

BIOCHEMISTRY(2021)

引用 3|浏览19
暂无评分
摘要
The eukaryotic transcription factor Pax5 has a DNA-binding Paired domain composed of two independent helical bundle subdomains joined by a flexible linker. Previously, we showed distinct biophysical properties of the N-terminal (NTD) and C-terminal (CTD) subdomains, with implications for how these two regions cooperate to distinguish nonspecific and cognate DNA sites [Perez-Borrajero, C., et al. (2016) J. Mol. Biol. 428, 2372-2391]. In this study, we combined experimental methods and molecular dynamics (MD) simulations to dissect the mechanisms underlying the functional differences between the Pax5 subdomains. Both subdomains showed a similar dependence of DNA-binding affinity on ionic strength. However, due to a greater contribution of non-ionic interactions, the NTD bound its cognate DNA half-site with an affinity approximately 10-fold higher than that of the CTD with its half-site. These interactions involve base-mediated contacts as evidenced by nuclear magnetic resonance spectroscopy-monitored chemical shift perturbations. Isothermal titration calorimetry revealed that favorable enthalpic and compensating unfavorable entropic changes were substantially larger for DNA binding by the NTD than by the CTD. Complementary MD simulations indicated that the DNA recognition helix H3 of the NTD is particularly flexible in the absence of DNA and undergoes the largest changes in conformational dynamics upon binding. Overall, these data suggest that the differences observed for the subdomains of Pax5 are due to the coupling of DNA binding with dampening of motions in the NTD required for specific base contacts. Thus, the conformational plasticity of the Pax5 Paired domain underpins the differing roles of its subdomains in association with nonspecific versus cognate DNA sites.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要