Microstructural analysis and fatigue crack initiation modelling of additively manufactured 316L after different heat treatments

Materials & Design(2020)

引用 33|浏览7
暂无评分
摘要
This study investigates the fatigue behaviour of 316L stainless steel manufactured by laser powder bed fusion. More specifically, the influence of the microstructure on fatigue is analysed for four different material conditions: as-built, stress relieved, fully annealed and hot isostatic pressed. Fully reversed tension-compression fatigue results on miniaturised vertically built and machined samples indicate that as-built and stress relieved specimens exhibit superior fatigue behaviour compared to fully annealed and hot isostatic pressed ones. Fine sub-grained cellular microstructure in as-built and stress relieved samples resulted in high fatigue performance, which was decreased with microstructure coarsening from the high temperature heat treatments. Secondly, a microstructure-based fatigue crack initiation model is adapted for additively manufactured 316L and verified for different material states. The results show that the analytical model depicts a conservative prediction for crack initiation life when compared with experimental results for full fracture. This validation offers the potential to expand the model for other material and process conditions.
更多
查看译文
关键词
Additive manufacturing,Laser powder bed fusion,316L stainless steel,Fatigue behaviour,Crack initiation model,Microstructure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要