Oxygen Affinity: The Missing Link Enabling Prediction of Proton Conductivities in Doped Barium Zirconates

CHEMISTRY OF MATERIALS(2020)

引用 27|浏览9
暂无评分
摘要
Proton-conducting oxides, specifically doped barium zirconates, have garnered much attention as electrolytes for solid-state electrochemical devices operable at intermediate temperatures (400-600 degrees C). In chemical terms, hydration energy, E-hyd, and proton-dopant association energy, E-hyd, are two key parameters that determine whether an oxide exhibits fast proton conduction, but to date ab initio studies have for the most part studied each parameter separately, with no clear correlation with proton conductivity identified in either case. Here, we demonstrate that the oxygen affinity, E-O.dopant, defined as the energy released when an oxide ion enters an oxygen vacancy close to a dopant atom, is the missing link between these two parameters and correlates well with experimental proton conductivities in doped barium zirconates. Ab initio calculations of point defects and their complexes in Sc-, In-, Lu-, Er-, Y-, Gd-, and Eu-doped barium zirconates are used to determine E-hyd, E-as, E-O.dopant, and the hydrogen affinity, E-H.host, of each system. These four energy terms are related by E-hyd = E-O.dopant 2E(H.host )2E(as). Complementary impedance spectroscopy measurements reveal that the stronger the calculated oxygen affinity of a system, the higher the proton conductivity at 350 degrees C. Although the proton trapping site is also an important factor, the results show that oxygen affinity is an excellent predictor of proton conductivity in these materials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要