谷歌浏览器插件
订阅小程序
在清言上使用

LEARNING MAPS FOR OBJECT LOCALIZATION USING VISUAL-INERTIAL ODOMETRY

ISPRS annals of the photogrammetry, remote sensing and spatial information sciences(2020)

引用 1|浏览4
暂无评分
摘要
Objects follow designated path on maps, such as vehicles travelling on a road. This observation signifies topological representation of objects’ motion on the map. Considering the position of object is unknown initially, as it traverses the map by moving and turning, the spatial uncertainty of its whereabouts reduces to a single location as the motion trajectory would fit only to a certain map trajectory. Inspired by this observation, we propose a novel end-to-end localization approach based on topological maps that exploits the object motion and learning the map using an recurrent neural network (RNN) model. The core of the proposed method is to learn potential motion patterns from the map and perform trajectory classification in the map’s edge-space. Two different trajectory representations, namely angle representation and augmented angle representation (incorporates distance traversed) are considered and an RNN is trained from the map for each representation to compare their performances. The localization accuracy in the tested map for the angle and augmented angle representations are 90.43% and 96.22% respectively. The results from the actual visual-inertial odometry have shown that the proposed approach is able to learn the map and localize objects based on their motion.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要