The Carrier Transport Properties of B-Doped Si Nanocrystal Films with Various Doping Concentrations

JOURNAL OF NANOMATERIALS(2020)

引用 1|浏览7
暂无评分
摘要
B-doped hydrogenated amorphous silicon (a-Si:H) films with various doping concentrations were prepared by a plasma-enhanced chemical vapor deposition (PECVD) technique. After thermal annealing, the as-deposited samples, B-doped silicon nanocrystals (Si NCs), were obtained in the films. The electronic properties of B-doped Si NC films with various doping concentrations combined with the microstructural characterization were investigated. A significant improvement of Hall mobility rising to the maximum of 17.8 cm(2)/V.s was achieved in the Si NC film after B doping, which is due to the reduction of grain boundary (GB) scattering in the B-doped samples. With increasing the doping concentration, it was interesting to find that a metal-insulator transition (MIT) took place in the B-doped Si NC films with high doping concentrations. The different carrier transport properties in the B-doped Si NC films with various doping concentrations were investigated and further discussed with emphasis on the scattering mechanisms in the transport process.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要