Tilted Fluctuation Electron Microscopy

APPLIED PHYSICS LETTERS(2020)

引用 5|浏览23
暂无评分
摘要
Fluctuation electron microscopy (FEM) is a scanning nanodiffraction-based method that offers a unique approach to characterizing nanometer-scale medium-range order (MRO) in disordered materials. In addition to determining the degree of MRO, careful analysis of scanning nanodiffraction data can also be used to determine strain in thin film amorphous samples. We applied FEM to characterize the strain and MRO of magnetron sputtered amorphous tantalum (a-Ta) thin films over a range of tilt angles from 0 degrees to 45 degrees in order to measure any deviations between the in-plane and out-of-plane strain and MRO. We validate our approach using electron diffraction simulations of FEM experiments for a-Ta. We measure anisotropic strain in the simulated a-Ta diffraction patterns and find that the experimental a-Ta is isotropically strained within the accuracy of our method. Our approach provides a workflow for acquiring tilted scanning nanodiffraction data, determining the relative strain and ordering as a function of in- and out-of-plane directions, and removing any artifacts induced in FEM data due to strain. We also describe some limitations of the tilted FEM method when applied to thin films with very low strains.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要