Surface-Based Analysis Of Leaf Microstructures For Adsorbing And Retaining Capability Of Airborne Particulate Matter In Ten Woody Species

FORESTS(2020)

引用 25|浏览4
暂无评分
摘要
We evaluated surface-based analysis for assessing the possible relationship between the microstructural properties and particulate matter (i.e., two size fractions of PM2.5 and PM10) adsorption efficiencies of their leaf surfaces on ten woody species. We focused on the effect of PM adsorption capacity between micro-morphological features on leaf surfaces using a scanning electron microscope and a non-contact surface profiler as an example. The species with higher adsorption of PM10 on leaf surfaces were Korean boxwood (Buxus koreana Nakai ex Chung & al.) and evergreen spindle (Euonymus japonicus Thunb.), followed by yulan magnolia (Magnolia denudata Desr.), Japanese yew (Taxus cuspidata Siebold & Zucc.), Japanese horse chestnut (Aesculus turbinata Blume), retusa fringetree (Chionanthus retusus Lindl. & Paxton), maidenhair tree (Ginkgo biloba L.), and royal azalea (Rhododendron schlippenbachii Maxim.). There was a higher capacity for the adsorption of PM2.5 on the leaf surfaces of B. koreana and T. cuspidata, followed by A. turbinata, C. retusus, E. japonicus, G. biloba, and M. denudata. In wax layer tests, T. cuspidata, A. turbinata, R. schlippenbachii, and C. retusus showed a statistically higher PM2.5 capturing capacity than the other species. Different types of trichomes were distributed on the adaxial and abaxial leaves of A. turbinata, C. retusus, M. denudata, pagoda tree (Styphnolobium japonicum (L.) Schott), B. koreana, and R. schlippenbachii; however, these trichomes were absent on both sides of the leaves of G. biloba, tuliptree (Liriodendron tulipifera L.), E. japonicus, and T. cuspidata. Importantly, leaf surfaces of G. biloba and S. japonicum with dense or thick epicuticular leaf waxes and deeper roughness revealed lower PM adsorption. Based on the overall performance of airborne PM capture efficiency, evergreen species such as B. koreana, T. cuspidata, and E. japonicus showed the best results, whereas S. japonicum and L. tulipifera had the lowest capture. In particular, evergreen shrub species showed higher PM2.5 depositions inside the inner wall of stomata or the periphery of guard cells. Therefore, in leaf microstructural factors, stomatal size may be related to notably high PM2.5 holding capacities on leaf surfaces, but stomatal density, trichome density, and roughness had a limited effect on PM adsorption. Finally, our findings indicate that surface-based microstructures are necessarily not a correlation for corresponding estimates with leaf PM adsorption.
更多
查看译文
关键词
leaf microstructure, leaf surfaces, PM10, PM2.5, PM adsorption, trichome, roughness
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要