Genetic Alterations In Non-Syndromic, Familial Gliomas In First Degree Relatives: A Systematic Review

CLINICAL NEUROLOGY AND NEUROSURGERY(2020)

引用 2|浏览0
暂无评分
摘要
Objective: Despite numerous reports in syndromic gliomas, the underlying genetic and molecular basis of familial, non-syndromic gliomas, in first degree relatives, remains unclear. This rare cohort of patients harboring invasive primary brain tumors with poor prognosis may provide a potential substrate of understanding the complex genetic cascade triggering tumorigenesis.Methods: A systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols (PRISMA-P) 2015 and The Cochrane Handbook of Systematic Reviews of Interventions. PubMed/MEDLINE, Embase and CENTRAL databases were accessed with set inclusion and exclusion criteria.Results: Following returns of 6756 articles, systematic analysis resulted in 48 papers, with 18 case series, 4 linkage analysis, 3 case-control studies, 1 cohort study, and 22 case reports. A total of 164 first degree relatives of 72 families were analyzed. The most common genetic alterations associated with non-syndromic familial gliomas reported to affect chromosomes 17 (51.1 % germline and 9.3 % tumor mutations), 22 (15.6 % germline and 6 % tumor mutations) and 1 and 19 (4.4 % germline and 9.3 % tumor mutations), with the most commonly affected genes TP53 (8.5 %) and NF2 (3.7 %). Tumor suppressors or cell-cycle regulators, cell signaling and transcription regulation or methylation were the most common gene function categories.Conclusion: Four specific chromosomes (17, 22, 1 and 19) and two specific genes (TP53 and NF2) appear to be most commonly involved. This appears to be the first systematic review of genetic factors underlying non-syndromic glioma clustering in families. The defined list of genetic abnormalities, linked to familial gliomas, may facilitate therapeutic targets and future treatment design.
更多
查看译文
关键词
Familial gliomas, Non-syndromic gliomas, Tumorig, enesis, Genetics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要