Optimizing the Super H-mode pedestal to improve performance and facilitate divertor integration

PHYSICS OF PLASMAS(2020)

引用 14|浏览61
暂无评分
摘要
Access to Super H-mode is demonstrated for moderately shaped plasmas in agreement with EPED [Snyder et al., Phys. Plasmas 16, 056118 (2009)] predictions. In particular, Super H-mode is realized in a DIII-D shape that is accessible to the JET tokamak. The reduced triangularity of the JET-compatible shape compared to previous Super H-mode plasma shapes does not prevent deep ascension into the so-called Super H-mode "channel." Operationally, access is enabled and optimized by delaying the neutral beam power injection and, thus, protracting the L-H transition. In highly shaped DIII-D plasmas, the injection of nitrogen sufficient for the establishment of a radiative divertor is shown to be possible during Super H-mode without pedestal degradation. Due to its increased stored energy and radiative divertor integration capabilities, Super H-mode is a promising candidate as operating regime for JET, ITER, and future fusion reactors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要