A facial synthesis of nitrogen-doped reduced graphene oxide quantum dot and its application in aqueous organics degradation

Green Energy & Environment(2022)

引用 9|浏览13
暂无评分
摘要
N-doped reduced graphene oxide quantum dots (N-rGQDs) have attracted more and more attention in efficient catalytic degradation of aqueous organic pollutants. However, the synthesis of N-rGQDs is generally a complex and high energy required process for the reduction and N-doping steps. In this study, a facile and green fabrication approach of N-rGQDs is established, based on a metal-free Fenton reaction without additional energy-input. The N structures of N-rGQDs play a significant role in the promotion of their catalytic performance. The N-rGQDs with relatively high percentage of aromatic nitrogen (NAr-rGQDs) perform excellent catalytic activities, with which the degradation efficiency of pollutant is enhanced by 25 times. Density functional theory (DFT) calculation also indicates aromatic nitrogen structures with electron-rich sites are prone to transfer electron, presenting a key role in the catalytic reaction. This metal-free Fenton process provides a green and cost-effective strategy for one-step fabrication of N-rGQDs with controllable features and potential environmental catalytic applications.
更多
查看译文
关键词
Reduced graphene oxide quantum dots (rGQDs),N-doping,Green fabrication,One-step,Metal free Fenton reaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要