谷歌浏览器插件
订阅小程序
在清言上使用

Numerical simulation on the maximum temperature and smoke back-layering length in a tilted tunnel under natural ventilation

TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY(2021)

引用 34|浏览29
暂无评分
摘要
The present study investigates the maximum temperature and smoke back-layering length S in the downhill direction from the fire source in a tilted tunnel under natural ventilation. Numerical simulations were conducted using FDS to study the smoke flow behaviors for a fire in a tunnel with nine tunnel slopes of 0, 1%, 2%, 3%, 4%, 5%, 6%, 7% and 8%. It was found that, due to the stack effect, the smoke stagnated at a distance from the fire source in the downhill direction. The effects of tunnel slope, alpha, fire source heat release rate, (Q) over bar, source-ceiling height H and tunnel width W on the maximum temperature and smoke back-layering length were studied. Results showed that the maximum temperature under the ceiling decreased with the increasing of tunnel slope or the decreasing of tunnel width. However, it increased with the increasing of heat release rate or the decreasing of source-ceiling height. A model was proposed for the maximum temperature rise. The smoke back-layering length S decreased with the increasing of the tunnel slope. Fire source heat release rate and tunnel width had no significant effect on the smoke back-layering length. And the smoke back-layering length decreased with the decreasing of source-ceiling height. Based on dimensional analysis, a simple model including the effects of both the tunnel slope and source-ceiling height H, was proposed to predict the smoke back-layering length.
更多
查看译文
关键词
Tunnel fire,Tunnel slope,Smoke back-layering length,Temperature,FDS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要