Accuracy assessment of global internal tide models using satellite altimetry

Ocean Science Discussions(2020)

引用 26|浏览24
暂无评分
摘要
Abstract. In order to access the targeted ocean signal, altimeter measurements are corrected for several geophysical parameters among which the ocean tide correction is one of the most critical, but the internal tide signature at the surface are not yet corrected globally. Internal tides can have a signature of several cm at the surface with wavelengths about 50–250 km for the first mode and even smaller scales for higher order modes. The goals of the upcoming Surface Water Ocean Topography (SWOT) mission and other high-resolution ocean measurements make the correction of these small scale signals a challenge, as the separation of all tidal variability from other oceanic signals becomes mandatory. In this context, several scientific teams are working on the development of new internal tide models, taking advantage of the very long altimeter time series now available, which represent an unprecedented and valuable global ocean database. The internal tide models presented here focus on the coherent internal tide signal and they are of three types: empirical models based upon analysis of existing altimeter missions, an assimilative model, and a three-dimensional hydrodynamic model. A detailed comparison and validation of these internal tide models is proposed using existing satellite altimeter databases. The analysis focuses on the four main tidal constituents M2, K1, O1 and S2. The validation process is based on a statistical analysis of multi-mission altimetry including Jason-2 and Cryosphere Satellite-2 data, taking advantage of the long-term altimeter databases available. The results show a significant altimeter variance reduction when using internal tide corrections on all ocean regions where internal tides are generating/propagating. A complementary spectral analysis also gives some estimation of the performance of each model as a function of wavelength, and some insight into the residual non-stationary part of internal tides in the different regions of interest.
更多
查看译文
关键词
Satellite Altimetry,Tidal Analysis,Wave Modeling,Oceanic Modeling,Air-Sea Interaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要