谷歌浏览器插件
订阅小程序
在清言上使用

A Cell Membrane-Anchored DNA Tetrahedral Sensor for Real-time Monitoring of Exosome Secretion

ACTA CHIMICA SINICA(2020)

引用 1|浏览13
暂无评分
摘要
Exosomes are nanoscale bilayer membrane vesicles actively secreted by cells, which carry abundant cell-specific substances. They can directly reflect the physiological and functional status of the secreting cells and play important roles in intercellular communication, physiological and pathological processes. In this work, we combined membrane modification technique with fluorescence imaging technique and blended CD63 aptamers into a highly stable and universal DNA tetrahedral structure to construct a cell membrane-anchored DNA sensor for real-time monitoring the secretion of exosomes. We designed four functional toes on each vertex of the tetrahedral sensor, respectively. A signal report toe on the top vertex consisted of fluorophore-modified CD63 aptamer, quencher-modified quencher probe(QP) binding part of the CD63 aptamer, and block probe (BP) binding the rest of the CD63 aptamer. The other three extended toes on the vertices were immobilized to the cell membrane by hybridizing with cholesterol-modified anchor probes(AI)), which spontaneously incorporated to a lipid bilayer via hydrophobic interaction between the cholesterol moieties and the cellular membrane. In the initial state, the proposed DNA tetrahedral sensor was tethered to membrane with fluorophores quenched by QP and CD63 aptamer blocked by QP and BP. Trigger probes (TP) were add to bind to BP, resulting in the activation of the sensor. Subsequently, CD63 aptamers were specifically bound to the secreted exosomes, leading to the release of QP and concurrent fluorescence restoration of fluorophore. The intensity of the fluorescent signal in cell membrane was proportional to the amount of exosomes captured, thus realizing the real-time monitoring of the exosomes by analysis the changes of the fluorescence intensity. The experimental results showed that the sensor exhibited a good stability and a high capture efficiency for secreted exosomes. This strategy would provide a potentially useful tool for a variety of applications in biomedical research, drug discovery and tissue engineering.
更多
查看译文
关键词
cell membrane-anchored sensor,DNA tetrahedron,exosome,secretion,real-time monitoring,aptamer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要