Bending Good Beats Breaking Bad: Phase Separation Patterns In Individual Cathode Particles Upon Lithiation And Delithiation

MATERIALS HORIZONS(2020)

引用 15|浏览14
暂无评分
摘要
The operation of a Li-ion battery involves a concerted sequence of mass and charge transport processes, which are underpinned by alternating dilation/contraction of the active electrode materials. Several Li-ion battery failure mechanisms can be directly traced to lattice-mismatch strain arising from local compositional heterogeneities. The mechanisms of chemo-mechanical coupling that effect phase separation and the resulting complex evolution of internal stress fields remain inadequately understood. This work employs X-ray microscopy techniques to image the evolution of composition and stress across individual bent V2O5 particles. Experimental findings show that lattice strain imposed by the deformation of an individual cathode particle profoundly modifies phase separation patterns, yielding striated Li-rich domains ensconced within a Li-poor matrix. Particle-level inhomogeneities compound across scales resulting in fracture and capacity fade. Coupled phase field modeling of the evolution of domains reveals that the observed patterns minimize the energetic costs incurred by the geometrically imposed strain gradients during lithiation of the material and illustrate that phase separation motifs depend sensitively on the particle geometry, dimensions, interfacial energetics, and lattice incommensurability. Sharp differences in phase separation patterns are observed between lithiation and delithiation. This work demonstrates the promise of strain-engineering and particle geometry to deterministically control phase separation motifs such as to minimize accumulated stresses and mitigate important degradation mechanisms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要