Superconducting Pairing Mechanism In Cecoin5 Revisited

PHYSICAL REVIEW B(2020)

引用 1|浏览0
暂无评分
摘要
Spectroscopic Imaging Scanning Tunneling Microscopy (SI-STM) measurements have previously been applied to the study of the heavy-fermion system CeCoIn5 to examine the superconducting gap structure and band dispersions via quasiparticle intereference. Here we directly measure the dispersing electron bands with angle-resolved photoelectron spectroscopy (ARPES) and compare with first-principles electronic structure calculations. By autocorrelating the ARPES-resolved bands with themselves we can measure the potential q vectors and discern exactly which bands the STM is measuring. We find that the STM results are dominated by scattering associated with a cloverleaf shaped band centered at the zone corners. This same band is also a viable candidate to host the superconducting gap. The electronic structure calculations indicate that this region of the Fermi surface involves significant contributions from the Co d electrons, an indication that the superconductivity in these materials is more three dimensional than that found in the related unconventional superconductors, the cuprates and the pnictides.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要