谷歌浏览器插件
订阅小程序
在清言上使用

Minimizing the Effects of On-Chip Hotspots Using Multi-Objective Optimization of Flow Distribution in Water-Cooled Parallel Microchannel Heatsinks

Journal of electronic packaging(2020)

引用 13|浏览7
暂无评分
摘要
The industry shift to multicore microprocessor architecture will likely cause higher temperature nonuniformity on chip surfaces, exacerbating the problem of chip reliability and lifespan. While advanced cooling technologies like two phase embedded cooling exist, the technological risks of such solutions make conventional cooling technologies more desirable. One such solution is remote cooling with heatsinks with sequential conduction resistance from chip to module. The objective of this work is to numerically demonstrate a novel concept to remotely cool chips with hotspots and maximize chip temperature uniformity using an optimized flow distribution under constrained geometric parameters for the heatsink. The optimally distributed flow conditions presented here are intended to maximize the heat transfer from a nonuniform chip power map by actively directing flow to a hotspot region. The hotspot-targeted parallel microchannel liquid cooling design is evaluated against a baseline uniform flow conventional liquid cooling design for the industry pressure drop limit of approximately 20 kPa. For an average steady-state heat flux of 145 W/cm(2) on core areas (hotspots) and 18 W/cm(2) on the remaining chip area (background), the chip temperature uniformity is improved by 10%. Moreover, the heatsink design has improved chip temperature uniformity without a need for any additional system level complexity, which also reduces reliability risks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要