Choice Set Misspecification in Reward Inference.

AISafety@IJCAI(2020)

引用 15|浏览83
暂无评分
摘要
Specifying reward functions for robots that operate in environments without a natural reward signal can be challenging, and incorrectly specified rewards can incentivise degenerate or dangerous behavior. A promising alternative to manually specifying reward functions is to enable robots to infer them from human feedback, like demonstrations or corrections. To interpret this feedback, robots treat as approximately optimal a choice the person makes from a choice set, like the set of possible trajectories they could have demonstrated or possible corrections they could have made. In this work, we introduce the idea that the choice set itself might be difficult to specify, and analyze choice set misspecification: what happens as the robot makes incorrect assumptions about the set of choices from which the human selects their feedback. We propose a classification of different kinds of choice set misspecification, and show that these different classes lead to meaningful differences in the inferred reward and resulting performance. While we would normally expect misspecification to hurt, we find that certain kinds of misspecification are neither helpful nor harmful (in expectation). However, in other situations, misspecification can be extremely harmful, leading the robot to believe the opposite of what it should believe. We hope our results will allow for better prediction and response to the effects of misspecification in real-world reward inference.
更多
查看译文
关键词
choice,set
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要