Neural progenitor cell-derived nanovesicles promote hair follicle growth via miR-100

JOURNAL OF NANOBIOTECHNOLOGY(2021)

引用 25|浏览15
暂无评分
摘要
Background Accumulating evidence shows that mesenchymal stem cell-derived extracellular vesicles (EVs) hold great promise to promote hair growth. However, large-scale production of EVs is still a challenge. Recently, exosome-mimetic nanovesicles (NV) prepared by extruding cells have emerged as an alternative strategy for clinical-scale production. Here, ReNcell VM (ReN) cells, a neural progenitor cell line was serially extruded to produce NV. Results ReN-NV were found to promote dermal papilla cell (DPC) proliferation. In addition, in a mouse model of depilation-induced hair regeneration, ReN-NV were injected subcutaneously, resulting in an acceleration of hair follicle (HF) cycling transition at the site. The underlying mechanism was indicated to be the activation of Wnt/β-catenin signaling pathway. Furthermore, miR-100 was revealed to be abundant in ReN-NV and significantly up-regulated in DPCs receiving ReN-NV treatment. miR-100 inhibition verified its important role in ReN-NV-induced β-catenin signaling activation. Conclusion These results provide an alternative agent to EVs and suggest a strategy for hair growth therapy.
更多
查看译文
关键词
Hair growth, Nanovesicles, Extracellular vesicles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要