Histological, Biomechanical, and Biological Properties of Genipin-Crosslinked Decellularized Peripheral Nerves.

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2021)

引用 14|浏览7
暂无评分
摘要
Acellular nerve allografts (ANGs) represent a promising alternative in nerve repair. Our aim is to improve the structural and biomechanical properties of biocompatible Sondell (SD) and Roosens (RS) based ANGs using genipin (GP) as a crosslinker agent ex vivo. The impact of two concentrations of GP (0.10% and 0.25%) on Wistar rat sciatic nerve-derived ANGs was assessed at the histological, biomechanical, and biocompatibility levels. Histology confirmed the differences between SD and RS procedures, but not remarkable changes were induced by GP, which helped to preserve the nerve histological pattern. Tensile test revealed that GP enhanced the biomechanical properties of SD and RS ANGs, being the crosslinked RS ANGs more comparable to the native nerves used as control. The evaluation of the ANGs biocompatibility conducted with adipose-derived mesenchymal stem cells cultured within the ANGs confirmed a high degree of biocompatibility in all ANGs, especially in RS and RS-GP 0.10% ANGs. Finally, this study demonstrates that the use of GP could be an efficient alternative to improve the biomechanical properties of ANGs with a slight impact on the biocompatibility and histological pattern. For these reasons, we hypothesize that our novel crosslinked ANGs could be a suitable alternative for future in vivo preclinical studies.
更多
查看译文
关键词
tissue engineering, nerve repair, nerve tissue decellularization, genipin, chemical crosslinking, histology, natural biomaterials, biomechanical and structural properties, cell-biomaterials interactions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要