Pressure-assisted sintering and characterization of Nd:YAG ceramic lasers

SCIENTIFIC REPORTS(2021)

引用 11|浏览15
暂无评分
摘要
Spark plasma sintering (SPS) is an advanced one-stage, rapid, near-net shape densification technique combining uniaxial pressure with resistive heating. Various transparent ceramics have been successfully fabricated by SPS, despite the existence of inherent carbon contamination and residual pores. Due to the disk-shape of SPS-processed samples, the technique may be suited for producing thin-disk ceramic laser materials. Nevertheless, an in-depth study of these materials has never been reported. With that goal in mind, the major focus of this study was to characterize the laser performance of Nd:YAG ceramics fabricated by one-stage SPS under conventional (60 MPa) and high (300 MPa) applied pressures. In addition to measuring the lasing slope efficiency and threshold, the passive losses associated with each sample were also evaluated. Surprisingly, it was found that in-line transmittance spectra do not provide accurate predictions of laser performance due to the nature of residual porosity. Moreover, homogeneity and beam quality were assessed, and comparisons were drawn between conventional and high-pressure SPS ceramics. This study lays the groundwork for the future of laser materials fabricated by SPS or similar pressure-assisted techniques.
更多
查看译文
关键词
Lasers,LEDs and light sources,Materials for optics,Materials science,Optics and photonics,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要