Laboratory simulation of Hot Jupiters atmosphere expansion

Journal of Physics Conference Series(2017)

引用 0|浏览2
暂无评分
摘要
Hot Jupiters (HJ) are exoplanets, gas giants with low orbits (<= 0.1 a.u.). The stellar X-ray and ultraviolet (XUV) radiation energy deposition result in heating ionization and the consequent expansion of planetary atmosphere. Expansion of upper atmosphere under certain conditions could be so large that the majority of light atmospheric constituents overcome the gravitational binding and escape from the planet in a form of hydrodynamic wind. Besides interaction of two counter-streaming plasma flows (stellar wind and ionized upper layers of planet atmosphere), each of this flows interact with planetary magnetic field. In such complex situation laboratory simulation can provide data that can't be obtained by computer simulation or observation. Experiment was carried out on KI-1 facility: high-vacuum chamber 5m long, 1.2 m in diameter with pressure similar to 10(-6) Torr. Magnetic dipole with two attached laser targets played the role of a planet, and background plasma from theta-pinch used for simulation of stellar wind. As a result, data on a behavior of plasma density and magnetic field were obtained. The novel phenomenon was registered: magnetic field is transferred by the cloud of laser plasma, which was not observed before in experiments or calculations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要