Comments on "Effect of soil amendments on trace element-mediated oxidative stress in plants: Meta-analysis and mechanistic interpretations"

Journal of Hazardous Materials(2024)

引用 32|浏览0
暂无评分
摘要
During the last two decades, the use of soil amendments has gained high attention due to their role in governing trace element biogeochemistry in the soil. Majority of the studies dealing with soil amendments focused on the soil-plant transfer of trace elements, their compartmentation inside the plants and associated toxic effects. However, there is comparatively limited data regarding the effects of soil amendments on trace-element-induced oxidative stress (variations in stress and tolerance parameters) in plants. Therefore, this review, for the first time, critically elucidates the broad and specific trends in literature data of stress, tolerance and growth parameters under co-application of trace elements and soil amendments. For this purpose, a total of 3120 plant response items from literature data were collected/analyzed. The meta-analysis revealed an overall decrease in stress parameters (reactive oxygen species, membrane damage and lipid peroxidation), while an increase in tolerance parameters (antioxidants) and growth parameters (pigment contents). However, these general trends vary greatly with respect to different types of amendments, trace elements, plant species, plant organs and exposure cultures. In addition, the trends also varied for different types of response items of stress, tolerance and growth parameters (e.g., POD vs CAT, H2O2 vs O2). Manuscript critically discusses some mechanistic explanations for these general and specific trends in literature data. Finally, this review proposed key research gaps and important future perspectives. All the aspects discussed in this review have been strengthened with 23 Tables and 7 Figures. The research gaps and scientific queries established in this review based on meta-analysis of literature data will open new aspects of future research and discussion in the fields of ecotoxicology, stress physiology and remediation.
更多
查看译文
关键词
Literature meta-analysis,Physiological parameters,Tolerance mechanisms,Stress parameters
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要