Real-time damage characterization for GFRCs using high-speed synchrotron X-ray phase contrast imaging

Composites Part B: Engineering(2021)

引用 12|浏览22
暂无评分
摘要
We report the application of high-speed synchrotron X-ray phase contrast imaging (PCI) in real-time damage characterization for glass fiber reinforced composites (GFRCs) subjected to dynamic loading. Dynamic single-edge notched bending (DSENB) experiments on pre-notched S-2 GFRCs were performed on a modified Kolsky compression bar. During loading, the synchrotron X-ray beam penetrated through the composite specimen from the side to detect damage evolution inside the material. Entire dynamic events were recorded by a high-speed camera as image sequences.0° and 90° unidirectional and cross-ply composites were investigated. An optical imaging technique was also employed to capture similar dynamic events in comparison with the radiographic imaging. It is demonstrated that high-speed X-ray PCI had sufficient phase contrast to characterize a crack initiation at a 20-μm spatial resolution within 920 ns and track the crack geometry during propagation, thereby providing reliable data to quantify the dynamic damage resistance of GFRCs. Furthermore, being capable of recognizing microscopic damage-related features at a sub-10-μm resolution, high-speed X-ray PCI provided fundamental material failure mechanisms to reveal the essential of macroscale structural failure of composites. It can also track the damage evolution inside and between individual plies of laminated composites. However, current high-speed X-ray PCI technique only supports in-situ observation and the high timing and spatial resolutions are limited within a field of view of ~2.5 mm in square, preventing its application in the three-dimensional and larger-area damage detection for GFRC structures.
更多
查看译文
关键词
Damage characterization,GFRCs,High-speed X-ray PCI,Dynamic loading,Failure mechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要