Nucleic Acids Therapeutics Using Polypurine Reverse Hoogsteen Hairpins

BIOCHEMICAL PHARMACOLOGY(2021)

引用 12|浏览5
暂无评分
摘要
PolyPurine Reverse Hoogsteen hairpins (PPRHs) are DNA hairpins formed by intramolecular reverse Hoogsteen bonds which can bind to polypyrimidine stretches in dsDNA by Watson:Crick bonds, thus forming a triplex and displacing the fourth strand of the DNA complex. PPRHs were first described as a gene silencing tool in vitro for DHFR, telomerase and survivin genes. Then, the effect of PPRHs directed against the survivin gene was also determined in vivo using a xenograft model of prostate cancer cells (PC3). Since then, the ability of PPRHs to inhibit gene expression has been explored in other genes involved in cancer (BCL-2, mTOR, topoisomerase, C-MYC and MDM2), in immunotherapy (SIRP alpha/CD47 and PD-1/PD-L1 tandem) or in replication stress (WEE1 and CHK1). Furthermore, PPRHs have the ability to target the complementary strand of a G-quadruplex motif as a regulatory element of the TYMS gene. PPRHs have also the potential to correct point mutations in the DNA as shown in two collections of CHO cell lines bearing mutations in either the dhfr or aprt loci. Finally, based on the capability of PPRHs to form triplexes, they have been incorporated as probes in biosensors for the determination of the DNA methylation status of PAX-5 in cancer and the detection of mtLSU rRNA for the diagnosis of Pneumocystis jirovecii. Of note, PPRHs have high stability and do not present immunogenicity, hepatotoxicity or nephrotoxicity in vitro. Overall, PPRHs constitute a new economical biotechnological tool with multiple biomedical applications.
更多
查看译文
关键词
PPRH, Cancer therapy, Gene silencing, Gene repair
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要