Joint Switch–Controller Association and Control Devolution for SDN Systems: An Integrated Online Perspective of Control and Learning

IEEE Transactions on Network and Service Management(2021)

引用 4|浏览50
暂无评分
摘要
In software-defined networking (SDN) systems, it is a common practice to adopt a multi-controller design and control devolution techniques to improve the performance of the control plane. However, in such systems the decision-making for joint switch-controller association and control devolution often involves various uncertainties, e.g., the temporal variations of controller accessibility, and computation and communication costs of switches. In practice, statistics of such uncertainties are unattainable and need to be learned in an online fashion, calling for an integrated design of learning and control. In this article, we formulate a stochastic network optimization problem that aims to minimize time-average system costs and ensure queue stability. By transforming the problem into a combinatorial multi-armed bandit problem with long-term stability constraints, we adopt bandit learning methods and optimal control techniques to handle the exploration-exploitation tradeoff and long-term stability constraints, respectively. Through an integrated design of online learning and online control, we propose an effective Learning-Aided Switch-Controller Association and Control Devolution (LASAC) scheme. Our theoretical analysis and simulation results show that LASAC achieves a tunable tradeoff between queue stability and system cost reduction with a sublinear time-averaged regret bound over a finite time horizon.
更多
查看译文
关键词
Software-defined networking,switch-controller association,control devolution,learning-aided control
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要