Combinational Reduction Of Graphene Oxide Via Coherent And Incoherent Light Irradiation For Flexible Supercapacitors

DIAMOND AND RELATED MATERIALS(2021)

引用 12|浏览2
暂无评分
摘要
The effect of combinational reduction by coherent and incoherent light sources of graphene oxide (GO) in fabricated thin flexible film supercapacitors was studied. Coherent light irradiation produces equally divided cracks on a reduced GO (rGO) surface, followed sequentially by incoherent light irradiation from a xenon camera flashtube source that not only significantly increases the overall degree of cracking on the surface substantially but also swells the rGO sheet vertically. Combinational light irradiation composed of sequential coherent and incoherent light sources efficiently reduces GO and increases the surface area of rGO, which was investigated through Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The enlarged surface area of the cracked rGO flakes can improve the specific energy and power of the supercapacitor, which were evaluated using cyclic voltammetry and galvanostatic charging/discharging measurements. The specific energy and power of the combinational light irradiation rGO supercapacitor were approximately 1000% and 100% higher than those of solitary coherent and incoherent light irradiation rGO supercapacitors, respectively.
更多
查看译文
关键词
Graphene oxide, Reduced graphene oxide, Optical reduction, Laser irradiation, Xenon camera flashtube irradiation, Supercapacitor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要