谷歌浏览器插件
订阅小程序
在清言上使用

Probing 3D and NLTE Models Using APOGEE Observations of Globular Cluster Stars

Astronomy & astrophysics(2021)

引用 5|浏览9
暂无评分
摘要
Hydrodynamical (or 3D) and non-local thermodynamic equilibrium (NLTE) effects are known to affect abundance analyses. However, there are very few observational abundance testsof 3D and NLTE models. We developed a new way of testing the abundance predictions of 3D and NLTE models, taking advantage of large spectroscopic survey data. We use a line-by-line analysis of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra (H band) with the Brussels Automatic Code for Characterizing High accUracy Spectra (BACCHUS). We compute line-by-line abundances of Mg, Si, Ca, and Fe for a large number of globular cluster K giants in the APOGEE survey. We compare this line-by-line analysis against NLTE and 3D predictions. While the 1D-NLTE models provide corrections in the right direction, there are quantitative discrepancies between different models. We observe a better agreement with the data for the models including reliable collisional cross-sections. The agreement between data and models is not always satisfactory when the 3D spectra are computed in LTE. However, we note that for a fair comparison, 3D corrections should be computed with self-consistently derived stellar parameters, and not on 1D models with identical stellar parameters. Finally, we focus on 3D and NLTE effects on Fe lines in the H band, where we observe a systematic difference in abundance relative to the value from the optical. Our results suggest that the metallicities obtained from the H band are more accurate in metal-poor giants. More atomic data and extended self-consistent 3D-NLTE computations need to be made. The method we have developed for testing 3D and NLTE models could be extended to other lines and elements, and is particularly suited for large spectroscopic surveys.
更多
查看译文
关键词
stars: abundances,infrared: stars,atomic data,line: formation,radiative transfer,hydrodynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要