In vivo NIR-II structured-illumination light-sheet microscopy.

Proceedings of the National Academy of Sciences of the United States of America(2021)

引用 46|浏览16
暂无评分
摘要
Noninvasive optical imaging with deep tissue penetration depth and high spatiotemporal resolution is important to longitudinally studying the biology at the single-cell level in live mammals, but has been challenging due to light scattering. Here, we developed near-infrared II (NIR-II) (1,000 to 1,700 nm) structured-illumination light-sheet microscopy (NIR-II SIM) with ultralong excitation and emission wavelengths up to ∼1,540 and ∼1,700 nm, respectively, suppressing light scattering to afford large volumetric three-dimensional (3D) imaging of tissues with deep-axial penetration depths. Integrating structured illumination into NIR-II light-sheet microscopy further diminished background and improved spatial resolution by approximately twofold. In vivo oblique NIR-II SIM was performed noninvasively for 3D volumetric multiplexed molecular imaging of the CT26 tumor microenvironment in mice, longitudinally mapping out CD4, CD8, and OX40 at the single-cell level in response to immunotherapy by cytosine-phosphate-guanine (CpG), a Toll-like receptor 9 (TLR-9) agonist combined with OX40 antibody treatment. NIR-II SIM affords an additional tool for noninvasive volumetric molecular imaging of immune cells in live mammals.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要