谷歌浏览器插件
订阅小程序
在清言上使用

Cerium-doped Bimetal Organic Framework As a Superhigh Capacity Cathode for Rechargeable Alkaline Batteries

Nanoscale(2021)

引用 13|浏览10
暂无评分
摘要
In this work, cerium (Ce)-doped NiCo-MOF (metal organic framework) was investigated for its application as a cathode material of alkaline batteries. Inert substitution of Ni/Co by Ce in MOF can make Ce to become part of the backbone of the framework and then ensure structure stability during redox reaction, which greatly improved charge and discharge cycle stability. With dopant mole fraction up to 5%, the redox potential of NiCo-MOF increased by 85%. Adequate Ce doping can potentially enhance rate capacity dramatically due to the large ion radius that provided an extra space for electrolyte ion shutting channel. 1% Ce-doped NiCo-MOF, having a capacity of 286 mA h g-1 at 2 A g-1 and retaining 93% of its capacity (265 mA h g-1) at 20 A g-1, emerged as the best performing material among all the Ce-doped NiCo-MOFs presented in this study. A full cell coupling Ce-doped NiCo-MOF cathode and Fe2O3 anode was assembled to verify its practical application. The full cell showed an initial capacity of 280 mA h g-1 at 2 A g-1 and retained 92% after 1000 charge and discharge cycles. Therefore, Ce doping emerges as a powerful strategy for the designing of cathode materials used in advanced alkaline battery.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要