DNA methylation and hydroxymethylation associated with gene expression regulatory network during 3-methylcholanthrene induced lung cell malignant transformation.

The Science of the total environment(2021)

引用 3|浏览4
暂无评分
摘要
3-methylcholanthrene (3-MCA) is a typical representative PAH. It has strong toxicity and is a typical chemical carcinogen. However, the epigenetic mechanisms underlying 3-MCA-induced tumourigenesis are largely unknown. In this study, a model of the 3-MCA-induced malignant transformation of human bronchial epithelial (HBE) cells was established successfully. The profiles of gene expression and DNA methylation and hydroxymethylation were obtained and analysed with an Illumina HiSeq 4000. A total of 707 genes were found to be significantly up-regulated, and 686 genes were found to be significantly down-regulated. Compared to control cells, 8545 mRNA-associated differentially methylated regions and 15,121 mRNA-associated differentially hydroxymethylated regions in promoters were found to be significantly altered in transformed cells. By using mRNA expression and DNA methylation and hydroxymethylation interaction analysis, 99 differentially expressed genes were identified. Among them, CA9 and EGLN3 were verified to be significantly down-regulated, and CARD6 and LCP1 were shown to be significantly up-regulated, and these genes mainly participated in cell growth, migration and invasion, indicating that these genes were key genes involved in the 3-MCA-induced malignant transformation of HBE cells. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that a large number of differentially expressed genes (DEGs) were involved mainly in RNA polymerase II transcription factor activity, chemical carcinogenesis, base-excision repair (BER), cytokine-cytokine receptor interactions, glycerolipid metabolism, steroid hormone biosynthesis, cAMP signalling pathways and other signalling pathways. Our study suggested that characteristic gene alterations associated with DNA methylation and hydroxymethylation could play important roles in environmental 3-MCA-induced lung carcinogenesis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要